sábado, 18 de octubre de 2008

LEVA



El mecanismo de leva y seguidor se emplea para transformar el movimiento circular en un movimiento rectilíneo alternativo con unas características determinadas que dependen del perfil de la leva. La forma de la leva se diseña según el movimiento que se pretende para el seguidor. Para saber las características del movimiento del seguidor es necesario realizar una gráfica.
En los motores de combustión alternativos se emplean levas para efectuar la apertura y cierre de las válvulas que dejan entrar el combustible y salir los gases de la cámara de combustión.
Las levas pueden tener distintas formas, de disco, cilíndricas y de campana; la más común es la de disco.

miércoles, 15 de octubre de 2008

POLIPASTO 2



Tiene la mitad de poleas fijas y la otra mitad móviles.

POLIPASTOS



Es un sistema de poleas compuesto de dos grupos, uno fijo y otro móvil.

Hay dos tipos de polipastos:

Polipasto 1:
Cuenta de una polea fija y las demás móviles donde la carga es igual a la resistencia.

BIELA MANIVELA





Mecanismo de biela y manivela en locomotoras de vapor. La biela recibe en (5) el movimiento lineal del pistón y lo transforma en rotación de las ruedas.

El mecanismo de biela - manivela es un mecanismo que transforma un movimiento circular a un movimiento de traslación (o viceversa). El ejemplo actual más común se encuentra en el motor de combustión interna de un automóvil, en el cual el movimiento lineal del pistón producido por la explosión de la gasolina se trasmite a la biela y se convierte en movimiento circular en el cigüeñal.
En forma esquemática, este mecanismo se crea con dos "barras" unidas por una unión de revoluta. Un extremo de la barra que rota (la manivela) se encuentra unido a un punto fijo, el centro de giro, y el otro extremo se encuentra unido a la biela. El extremo restante de la biela se encuentra unido a un pistón que se mueve en línea recta.

TORNILLO TUERCA




El giro de un tornillo alrededor de su eje produce un movimiento rectilíneo de avance, que lo acerca o lo separa de la tuerca, fija. Alternativamente, una tuerca móvil puede desplazarse de la misma manera a lo largo de un tornillo o husillo. El mecanismo es capaz de ejercer grandes presiones en el sentido de avance del tornillo. Por eso se usa, por ejemplo, para construir tornillos de banco. Hay diferentes tipos de tornillos y tuercas. Un parámetro característico es el número de entradas o surcos (hélices independientes) del tornillo. En tornillos de una sola entrada, el paso de rosca del tornillo coincide con el avance del tornillo producido al girar 360º alrededor de su eje. Por lo tanto, las velocidades cumplen la relación
V = p / (2 )
V : velocidad de avance del tornillo
 : velocidad de giro del tornillo
p : paso de rosca
El giro de un tornillo alrededor de su eje produce un movimiento rectilíneo de avance, que lo acerca o lo separa de la tuerca, fija. Alternativamente, una tuerca móvil puede desplazarse de la misma manera a lo largo de un tornillo o husillo. El mecanismo es capaz de ejercer grandes presiones en el sentido de avance del tornillo. Por eso se usa, por ejemplo, para construir tornillos de banco. Hay diferentes tipos de tornillos y tuercas. Un parámetro característico es el número de entradas o surcos (hélices independientes) del tornillo. En tornillos de una sola entrada, el paso de rosca del tornillo coincide con el avance del tornillo producido al girar 360º alrededor de su eje. Por lo tanto, las velocidades cumplen la relación
V = p / (2 )
V : velocidad de avance del tornillo
 : velocidad de giro del tornillo
p : paso de rosca

VIDEO DE PIÑON CREMALLERA

PIÑON CREMALLERA




Este mecanismo convierte el movimiento circular de un piñón en uno lineal continuo por parte de la cremallera, que no es más que una barra rígida dentada . Este mecanismo es reversible, es decir, el movimiento rectilíneo de la cremallera se puede convertir en un movimiento circular por parte del piñón. En el primer caso, el piñón al girar y estar engranado a la cremallera, empuja a ésta, provocando su desplazamiento lineal.

Aunque el sistema es perfectamente reversible, su utilidad práctica suele centrarse solamente en la conversión de circular en lineal continuo, siendo muy apreciado para conseguir movimientos lineales de precisión (caso de microscopios u otros instrumentos ópticos como retroproyectores), desplazamiento del cabezal de los taladros sensitivos, movimiento de puertas automáticas de garaje, sacacorchos, regulación de altura de los trípodes, movimiento de estanterías móviles empleadas en archivos, farmacias o bibliotecas, cerraduras..


Cómo se puede observar en el anterior vídeo, podemos resumir que…
• Tipo de mecanismo: Transformación circular a lineal
• Elemento motriz: Piñón, que describe un movimiento circular.
• Elemento conducido: Cremallera, que describe un movimiento lineal.

miércoles, 8 de octubre de 2008

POLEA MOVIL

VIDEO DE POLEAS





Una forma alternativa de utilizar la polea es fijarla a la carga, fijar un extremo de la cuerda al soporte, y tirar del otro extremo para levantar a la polea y la carga. A esta configuración se le llama "polea simple móvil".
La polea simple móvil produce una ventaja mecánica: la fuerza necesaria para levantar la carga es justamente la mitad de la fuerza que habría sido requerida para levantar la carga sin la polea. Por el contrario, la longitud de la cuerda de la que debe tirarse es el doble de la distancia que se desea hacer subir a la carga.

POLEA FIJA



La manera más sencilla de utilizar una polea es anclarla en un soporte, colgar un peso en un extremo de la cuerda, y tirar del otro extremo para levantar el peso. A esta configuración se le llama polea simple fija.
Una polea simple fija no produce una ventaja mecánica: la fuerza que debe aplicarse es la misma que se habría requerido para levantar el objeto sin la polea. La polea, sin embargo, permite aplicar la fuerza en una dirección más conveniente

PALANCA DE TERCER GENERO

VIDEO DE LAS PALANCAS






En la palanca de tercer género, la potencia se encuentra entre el fulcro y la resistencia.
Ejemplo de este tipo de palanca es el quitagrapas y la pinza de cejas. En el cuerpo humano, el conjunto: codo - bíceps braquial - antebrazo, también la articulación temporomandibular.

El tercer tipo se caracteriza en que la fuerza aplicada debe ser mayor que la fuerza obtenida. Este tipo de palancas se utiliza cuando lo que se requiere es ampliar la velocidad transmitida a un objeto o la distancia recorrida. Esto también se puede conseguir con la palanca de primer género situando el fulcro próximo a la fuerza aplicada.

PALANCA DE SEGUNDO GENERO



En la palanca de segundo género, la resistencia se encuentra entre el fulcro y la potencia.
Ejemplos de este tipo de palanca son la carretilla y el cascanueces.

PALANCA DE PRIMER GENERO



En la palanca de primer género, el punto de apoyo se encuentra situado entre la potencia y la resistencia.

Ejemplos de este tipo de palanca son el balancín, las tijeras, las tenazas, los alicates, o los remos. En el cuerpo humano se encuentran varios ejemplos de primer género, como el conjunto: tríceps braquial - codo - antebrazo.